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We present a method to compute the magnetic normal modes of a ferromagnetic particle. The
method is a hybrid of micromagnetic simulations and a “dynamical matrix” approach similar to
that used for vibrational studies. We use the method to calculate the normal modes of an Fe
parallelepiped and compare the results with the modes recently extracted from a purely micromag-
netic simulation. The results of the two approaches are in excellent agreement. We discuss the
pros and cons of both approaches. We also present information on standing waves with wavevector
perpendicuar to the applied field and on a family of modes localized at the particle ends.
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I. INTRODUCTION

The calculation of the magnetic normal modes of small particles is an extremely complicated problem when both
dipolar and exchange contributions are taken into account. Walker!? succeeded in obtaining solutions for a few rela-
tively simple geometrical shapes by ignoring exchange contributions. Analytical approaches®* have had some success
but require certain assumptions regarding the mode profiles. Micromagnetic simulations® based on the Landau-
Lifshitz—Gilbert equation have provided additional insight into some of the normal modes of small magnetic particles.
Micromagnetic simulations typically rely on codes® designed for the calculation of the static ground state of a mag-
netic particle. With these codes, it is possible to track the time evolution of the average magnetization of a particle.
Information about the normal modes is then extracted by means of the Fourier transform. However, only modes
with nonzero average magnetization can be observed, and the codes in their present form yield no information about
the profiles (frequencies and eigenvectors) of the normal modes. Only recently has the micromagnetic approach been
extended to enable the study of profiles of standing magnetic waves in small disks for the special case of an oscil-
latory in-plane applied field.” In this case, only modes antisymmetric with respect to a plane perpendicular to the
applied field were obtained. The so-called hybrid method® with a tridimensional mesh of tetrahedral elements has
been used to compute demagnetizing fields, and a similar method with a bidimensional mesh of triangular elements
has been used to compute various magnetic modes oscillating across a strip of infinite length.® An attempt to justify
the presence in experimental spectra!®!! of localized modes and of standing modes quantized in the direction of the
applied field (similar to the backward volume waves in a film) and of its normal (Damon—Eshbach (DE)-like modes)
has been presented recently in an approximate theoretical framework that includes the boundary conditions at the
lateral element edges and the strong inhomogeneity of the internal magnetic field.!?'3® However, some simplifying
assumptions on the mode profiles were also introduced.

By extending the simulation approach, using a code which independently tracks the time evolution of all the “spins”
in a particle, the authors of the present paper showed recently'* that it is possible to reconstruct normal modes from
the Fourier transforms of each individual spin. To demonstrate the effectiveness of the technique, we computed the
normal modes of a polycrystalline iron particle in the form of a rectangular parallelepiped measuring 116 x 60 x 20 nm
and magnetized along the long axis. Good agreement was obtained when mode frequencies were compared to those
predicted by existing standing-wave approximations. However, the actual mode profiles were considerably more
complex than those predicted by standing-wave theory, and localized modes—absent in standing-wave theory—were
also found to be present.

In a micromagnetic simulation, the sample is divided into cells, the magnetization is assumed uniform in each cell
and to precess about its equilibrium direction under the influence of the external field and the dipolar and exchange
forces due to all the spins in the system. Given the similarity between this and conventional molecular dynamics,



where each atom obeys Newton’s laws in the potential of the surrounding atoms, it seems reasonable to solve the
normal-mode problem in a manner similar to the dynamical matrix approach used for atomic vibrations. A similar
approach has been used!®!% in the case of magnetic multilayers, where the in-plane translational symmetry reduces
the number of independent variables of the dynamical problem to twice the number of the layers. In the present
article we present the results of such a “dynamical matrix” approach for magnetic normal modes of nanometric small
particles which, with respect to multilayers, are laterally confined and require a subdivision of the particle in a large
number of cells. The method presents several advantages. (i) A single calculation yields the dynamical magnetization
profiles (frequencies and eigenvectors) of all the modes of any symmetry; (ii) Particles of any shape can be considered,
at least in principle; (ili) No a priori limitation is imposed on the form and pinning of the modes; and (iv) The
computation time is affordable.

In Sec. IT we outline the theoretical approach. In Sec. III we apply the formalism to the exact same particle as
investigated in Ref. 14 to assess the mathematical viability of the dynamical matrix approach.

II. THEORY

As a starting point we recall that a single film, uniformly magnetized, can be treated in terms of the motion of a
single dipole. The dynamical matrix is obtained by writing the total energy as a function of the orientation of the
dipole in terms of the polar angles ¢ and #; the torque is then obtained from the second derivative of the energy with
respect to the polar angles. The precession frequency is given by the determinant equation'”
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Here, E,p is the second derivative of the total energy with respect to the polar angles a and j3; €2 is the frequency, M,
the saturation magnetization, and v the gyromagnetic ratio. This method can be generalized to the case of a particle
divided into N cells—rectangular parallelepipeds—with a square base of size d and height h; h can be identified with
the thickness of the particle.

We consider a reference frame with the z-axis along the normal to the particle, the x and y-axes along the particle
sides. Let the polar angles that define the orientation of magnetization in the nth cell be ¢, and 6,, so that the
(unitary) vector specifying the magnetization direction is given in Cartesian coordinates by

m,, = (sin 8, cos ¢n,, sin 8, sin ¢,,, cos0,,). (2)

With this choice, 6, is the angle between the magnetization and the z-axis, ¢, the in-plane angle with the z-axis.
The energy density E must then be written as a function of these angles and the material parameters.

As shown in Appendix A, the equations leading to the determinant condition (1) can be generalized giving rise to
the system of 2N homogeneous linear equations,
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where A = iM,Q/v, and 66; and §¢; are the small angles that define the deviations of the magnetization in each
cell with respect to the ground state. By suitable exchanges of rows (or columns) the system of Egs. (3) can be
transformed in an eigenvalue problem,

Bv = \v
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for k,j =1,...,N. The expressions of these matrix elements depend on the choice of the dynamical variables. Instead
of 66 and d¢, one could use the polar components dmg = M, 68 and dmg = M, sinf5¢ (Ref. 18).

When the cells are decoupled, the dynamical matrix (4) is block-diagonal and consists of N 2 x 2 submatrices.
When the cells are coupled, as is generally the case, it is necessary to include the off-diagonal coupling submatrices
with k # j.

Once the eigenvectors v are obtained, the dynamical magnetization Jm in Cartesian coordinates and in units of
M; is given by

omy, = (— sin 6, sin @y, dy, + cos Oy, cos @y, 60k, sin Oy, cos P, ddy, + cos O, sin ¢y, 60y, — sin O, 6y,).

Although the collection of all dmy, defines the mode profile, it must be remarked that dmy, is a complex vector,
because d¢; and d8y are, in general, complex. A particularly interesting common case corresponds to an in-plane
magnetlzed partlcle Where cos@; = 0 and sind;, = 1 in this case, it can be shown that the solution has the form
v = (25¢1,501,16¢2,502, ..), where the amplitudes 6¢k and 60y are real. In other words, the z-components of dmy
are out of phase with the in-plane (z and y) components.

The energy density can be written as a sum of Zeeman E,, exchange Fexc, and dipolar Eg;, energies. The first two
terms are straightforward and are equivalent to what is used in micromagnetic simulations, namely

E,=-M,H-» m;, (5)
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where H is the external field. For the exchange, we have the expression
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where the second sum extends over the nearest neighbors of cell j, A is the exchange coupling constant, and the
effective exchange strength scales as d—2.

The dipolar energy is by far the most difficult to treat. In the simulations reported in Ref. 14, the dipolar field
was obtained from a complete solution of the Poisson equation at every step.® Such an approach is not well suited to
yield the derivatives needed for the torque matrix. An alternative approach, also often adopted in micromagnetics,
is to write the dipolar energy as a sum of the interactions between the magnetic moments my, representative of the

magnetization in each cell, by means of a demagnetizing tensor N (k,5)%2°,
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Eaqip = mi - N (k, j)m;. (7)

k=1 j=1

The problem thus reduces to the calculation of the tensor elements <]V(k, j)- It should be noted that the latter
expression is particularly useful within our approach, because the derivative of the energy applies only to the moments
my. (The demagnetizing tensor depends exclusively on the geometry and discretization of the magnetic particle.) In
this framework it is implicitly assumed that the demagnetizing field is constant in each cell and equal to its average
value.

We adopted two approaches, labeled Method A and Method B, to evaluate W}(k, j). Method A evaluates the
interactions of the magnetic surface charges from every cell (produced by the uniform magnetization inside each cell).

Explicit expressions for (IV are given in Ref. 19. The same approach is used by default in the OOMMF code.® Method

B, also used in micromagnetic simulations, assumes that the N (k,j) are given by point-dipole interactions, with the
dipoles at the center of each (in this case) cubic cell.2! The elemental parallelepiped is obtained as a stack along the
normal to the particle of a proper number N, of cubic cells, such that dN, = h. This approach implies that the sums
over the in-plane cells in the expressions (5)—(7) are accompanied by a sum over the N, cubic cells along the z-axis.
To have a constant magnetization in each parallelepiped, one must also assume that the moments my, do not depend
on z. It is known that the point-dipole approximation produces small errors, especially for neighboring cells.2°

Explicit expressions for the second derivatives of the energy are given in Appendix B. We will use both Method A
and Method B to compute the dipolar energy and to evaluate the normal mode frequencies and compare the results
with the full calculation in Ref. 14.



TABLE I: Frequencies, in GHz, of normal modes of a 116 x 20 x 60 nm Fe particle with a field of 10 kOe applied along the long
axis. The symmetric and antisymmetric end modes are essentially degenerate at this field. The modes labeled as “n-nodes”
correspond to the standing wave-like modes, with wavevectors along the field direction, reported in Ref. 14.

Method Cell size Mode
(number of cells) (nm) |Fundamental End mode 6-nodes 10-nodes 9 x 2-nodes
Ref. 14 (29 x 15 x 5) 4x4x4 52.9 30.2 56.6 89.3 94.4
A (29x15x1) 4x4x20 53.1 30.0 55.5 86.5 91.7
A (58 x 30 x 1) 2x2x20| 524 293 555  90.4 94.2
B (29 x 15 x 5) 4x4x4 52.9 28.3 54.8 85.2 90.7
B (58 x 30 x 10) 2x2x2 52.7 28.8 55.6 90.3 94.3
OOMMF (20 x 15 x 1) 4 x4 x 20|  52.6 29.5 55.1 — —

III. THE NORMAL MODES OF AN Fe BRICK-SHAPED PARTICLE

For systems with a small number of cells (typically less then 100), the system of Egs. (3) can be solved directly
with symbolic mathematics software. The second derivatives need not to be evaluated analytically, and the solutions
of the determinant equation can be obtained with a few lines of code. However, to be able to treat realistic cases, it
was necessary to develop a computer code based on the analytical formulas of the previous section. With this code,
we are able to treat particles with up to 1800-2000 cells with computation times less than one hour on a standard
PC.

We have computed the magnetic excitations of a 116 x 60 x 20 nm Fe particle in an externally applied field of
10 KOe along the z-axis (116 nm), neglecting anisotropy and using the same parameters as in Ref. 14. The ground
state calculated with the OOMMEF code was used as a starting point for the dynamical calculations; the magnetization
was in-plane. Cells with d = 4 and d = 2 nm yield 435 and 1740 eigenfrequencies, respectively. To make a comparison
with the results in Ref. 14, it is necessary to select the same modes discussed in that article, either by plotting the
profiles of the modes in the frequency range of interest or on the basis of their symmetry. We found that the mode
profiles obtained from the dynamical matrix approach were almost indistinguishable from those of the micromagnetic
approach,'® which involved the Fourier transform of the time evolution of the magnetization. With this in mind we
restrict our comparison to the frequencies of the individual modes. Table I gives a comparison of the frequencies
of various modes found in Ref. 14 and those calculated with our two approximations for the dipolar field. We also
investigate the effect of changing the number of computational cells in the particle.

Included in Table I are the frequencies extracted by performing a Fourier transform on the time dependence of the
average magnetization obtained using OOMMEF. The assignment of the modes in this case is made by noting that this
approach only detects modes with (§m;) # 0. In decreasing order of (§m;), these are the fundamental, the symmetric
end mode, and the lowest order symmetric standing wave-like modes.

The modes of Table I are of three kinds: standing waves oscillating solely in the direction of the applied field
(analogous of the backward modes in films), two-dimensional standing modes mixing oscillations in two perpendicular
directions, and end modes evanescent in the direction of the applied field. Notice that the point-dipole Method B,
although it considers a stack of cubic cells in the z direction, actually assumes no dependence of the magnetization
along z. In this sense it does not differ from Method A. We note that the calculations in Ref. 14 also did not observe
any obvious z dependence in the modes.

Overall it can be seen that the dynamical matrix approach yields results in good agreement with the full simulation;
the results of Methods A and B with smaller cells are very close, the only appreciable difference being the frequency
of the end mode. For the latter, Method A is in better agreement with the full simulation. The frequencies of
the higher-order modes calculated with our methods show an appreciable dependence on the size of the mesh; high
resolution is needed to obtain a reasonable agreement with the full simulation. Finally, we remark that the OOMMF
results are within 0.5 GHz of the results of Method A.

The dynamical matrix approach provides, in addition to the modes in Table I, information on modes with oscillations
in the direction perpendicular to the applied field. Such modes were not observed in Ref. 14, because of the type of
perturbations used in that investigation. Two of these modes are shown in Fig. 1, one antisymmetric and the other
symmetric with respect to a plane parallel to the applied field.

The frequency of these modes as a function of their wavevector is plotted in Fig. 2.



FIG. 1: Mode profiles of two DE-like modes; (a) 1-node mode with Q = 58.6 GHz, (b) 6-node mode with Q = 138.2 GHz.
Method A with 58 x 30 cells. We plot the real part of m, (arbitrary units) as a function of the cell position. As explained in
the text, the imaginary part is zero.

FIG. 2: Variation of the normal mode frequencies with the wavevector. The wavevector is perpendicular to H and is plotted
in units of 7/w. Dots: DE-like modes; squares: end modes.

The wavevector ¢ was extracted from the distance between nodes or crests. The linear, increasing, dependence on
q at low frequencies is consistent with the expectation for DE-like modes. At larger ¢ however, instead of curving
downwards as predicted by dipolar theory, the dispersion curves upwards. This effect can be traced to exchange
interaction. It is worthy of note that, although all these modes appear to be unpinned (as judged by their amplitudes
at the edges), the resulting wavevectors do not exactly correspond to the expected nw/w with n an integer and w
particle width (w = 60 nm).

We also observed a family of modes localized at the ends but with structure along the width. Both symmetric
and antisymmetric modes with respect to a plane parallel to the applied field are found. As for the symmetric and
antisymmetric end modes discussed in Ref. 14, each of these modes is actually a pair of almost degenerate modes,
which are symmetric and antisymmetric with respect to a plane perpendicular to the applied field. A few of these
modes are shown in Fig. 3.

The dispersion of these modes is also shown in Fig. 2. Although in this case we do not have any analytical theory
with which to compare, the behavior of the two dispersions in Fig. 2 is similar, showing that the standing wave feature
peperdicular to H plays the same role in the two families of modes.
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FIG. 3: Mode profiles of three end modes; (a) 1-node mode with Q = 37.5 GHz, (b) 2-node mode with Q = 46.3 GHz, (c) 6-node
mode with Q = 122.0 GHz. See Fig. 1 for details.

The localization of modes at the ends of the particle is in agreement with the considerations presented in Ref. 12.
According to these authors, the existence of localized modes is related to the strong inhomogeneity of the demagne-
tizing field along the length of the particle (that is, along the field direction), while the demagnetizing field is almost
constant along the width of the particle. The above inhomogeneity leads to DE-like standing waves (Fig. 1) extending
in the central region where the demagnetizing field is almost constant and quite small, and also to modes at the end
regions where the demagnetizing field is large but also quite homogeneous. It is interesting to note that sum of two
complementary modes profiles, for example those plotted in Fig. 1(b) and Fig. 3(c), gives rise to an ideal standing
wave insensitive to the lateral confinement. Consistent with the absence of large inhomogeneities in the demagnetizing
field along the particle width, we have not found any edge-modes localized at the sides of the sample.

In addition, we also find a large variety of two-dimensional modes with nodes along both directions, like the 9 x 2
mode reported in Ref. 14 and listed in Table I. These types of modes are expected in the simple “standing wave”
picture. However, because the standing wave picture is too simplistic, these modes can show hybridization effects.
Figure 4 shows the profile of the two modes at 64.6 and 66.1 GHz.

The sum and difference of the two eigenvectors, shown in Fig. 5, are the modes that would be predicted in the
standing wave approximation.

In our finite particle, these two modes hybridize to yield the profiles shown in Fig. 4.

IV. CONCLUSIONS

We have shown that a dynamical matrix approach yields the correct frequencies and profiles of the normal modes
of a magnetized particle. The approach requires considerably less computational power than the micromagnetic
approach where the time dependence of each spin in the system is tracked.'* However, contrary to the micromagnetic
approach, the dynamical matrix approach does not allow for probing nonlinear effects, nor does it yield information
regarding which modes are excited in pulsed field experiments.

For comparison purposes, we have applied the dynamical matrix approach to the particle studied with the micro-
magnetic approach in Ref. 14 — a 116 x 60 x 20 nm Fe rectangular parallelepiped. We found the modes to be in



FIG. 4: Contour plot of two mode profiles of mixed character; (a) Q = 66.1 GHz, (b) Q = 64.6 GHz. Method A with 58 x 30
cells. We plot the real part of dm, (arbitrary units) as a function of the cell position.

excellent agreement. We also presented information on modes with wavevectors perpendicular to the applied field.
In addition to the expected Daman-Eshback-like modes located in the center of the particle, we observed a family of
similar modes localized at the sample ends.

The dynamical matrix approach allows the investigation of mode hybridization. Our results show the existence
of modes which, if combined, yield plane wave-like solutions but which, due to the confined geometry, loose their
plane-wave attributes.
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APPENDIX A: EQUATIONS OF MOTION

The equations of motion for a magnetic dipole in terms of the second derivatives of the total energy H of the system
can be derived from the first of the Hamilton equations,

O _OH — Opn _ _OH
ot  Opn’ ot Og’

where the g, are the generalized variables of the problem and the p,, the corresponding conjugate momenta. The
direction of the magnetic dipole of the kth cell, which has a uniform magnetization, is given by Eq. (2). In this case,
the dynamical variables are the small deviations from eqilibrium of its polar angles,

q1 = 5¢k, q2 = 60k-



FIG. 5: Contour plot of two mode profiles derived from those in Fig. 4 as (a) sum and (b) difference, as described in the text.

The corresponding variation of angular momenta can be found recalling that a magnetic dipole of momentum g has
an angular momentum [ = % 1, where  is the gyromagnetic ratio. Therefore,

1 vMy
l: _I'l‘:
v v

where v is the volume of the cell. Since g; is a rotation of the magnetic dipole around the z axis, its conjugate
momentum p; corresponds to the z component of the variation of angular momentum,

vM,

m,

M,
=0l = 25m, = —”7 sin B, 6. (A1)

The other momentum ps can be calculated analogously; g2 is a rotation of the dipole moment around an axis (of
unitary vector ¢' = —(sin @)& + (cos ¢)g) in the (z,y)-plane, at an angle ¢’ = ¢ + 7/2 from the z-axis. Therefore, po

~

corresponds to the projection on the ¢’ vector of the variation of the angular momentum,
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Using Egs. (A1) and (A2) in the first Hamilton equation, we obtain the following system:
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The first derivatives of the energy can be calculated by introducing the energy density £ = H/v and expanding it in
power series, retaining only the leading terms,

N N
1
E=353 % (Epus;00n00; + 2B0,0,00n00; + Ep,0,005 60;) ,

n=1 j=1



where the derivatives must be calculated at equilibrium. Here, we have taken into account the vanishing of the first
derivatives at equilibrium and neglected the inessential constant term. Thus we obtain the equations

98 I
5t = T simgy O (Ponss 365 + Boo, 86;)
e ]:1
8 66), V.

ot :Ms sin 6, ; (Ed)wj 09; + Eouo, 50]-) '

By introducing the time dependence of the variable as e®** and rearranging some terms, we obtain Eq. (3).

APPENDIX B: SECOND DERIVATIVES OF THE ENERGY DENSITY

The second derivative of the Zeeman energy is

82mk
_MyH -2
Eakﬁj = 6ak6/8k J

The second derivative of the exchange energy is

24: 0? my k=i
80&]‘;8,8]9 my =2
Eakﬂj = 2A amk . 3’!7’1.]

dZ c'iak 6,3]
0 k and j far away.

k and j nearest neighbors,

The second derivative of the dipolar ene§y is calculated by taking into account that the symmetric demagnetizing

tensor satisfies the symmetry condition N (k,j) = w(j, k). The result is

(
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The second and third term inside the parenthesis in the expression for £ = j correspond to the self-interaction.
The partial derivatives of the magnetization which appear in the equations of this appendix are easily obtained
from Eq. (2) and evaluated at equilibrium.
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